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I

RADAR CROSS SECTION EVALUATION OF ARBITRARY CYLINDERS

H INTRODUCTION

The objective of this program has been to develop a 2D code and numeri-

cal technique for determining the Radar Cross Section (RCS) and otber

electromagnetic scattering behavior of an infinite cylinder of arbitrary

cross-sectional shape and matcrial composition. Both monostatic and bis-

tatic RCS's need be obtained.

V •The technique we have used to meet this objective differs greatly from

S0 conventional methods of RCS evaluation. Rather than working in the fre-

quncy domain, we have illuminated the target by an Electromagnetic Pulse

(FMi4) containing significant energy over all frequencies of incerest. We

have then solved the near-field problem by Time-Domain Finite Differ.ncing

(TDFD) and Fourier transformed the result to obtain the desired RCS as a

fivnction of frequency. A near-field to far-field transformation is also

incorporated into our Fourier procedure.

Our technique has been tested with targets up to 5 m across -1 obtain

results from 50 tu 500 MHz. (These parameters correspond to a maximum of 8

free-space wavelengths.) There is no reason we could not obtain information

uxp to 1 GHz, although we have not actually done this to date in the interest

of conserving computer resources.

We have run test cases using generalized lossy inhomogeneous media,

where the real and imaginary parts of the permittivity or permeability are

frequency and position dependent. Additionally, the code is generalized to

treat materials with anisotropy in the plane perpendicul~r to the cylinder

axis. The code can also treat generalized material discontinuities includ-

ing resistive, capacitive and conductive cards.

Additionally, we have obtzined canonical solutions to several problems

with known frequency-domain solutions ia order to evaluate the accuracy of

ovr code. These problems include a circular cylinder composed of an ar-

bitrary number of concentric cylindrical shells, where the electrical

m1CN
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parameters of each shell are arbitrary (but isotropic). We have also com-

puted the scattering by a thin dielectric strip of infiiite extent, using

the technique of £ichmond. Code-code comparisons between the canonical anc'

TDFD results for these two problems will be presented later.

Additionally, we have derived the equations for scattering by a per-

fect, circular dielectric cylinder with anisotropy in the plane

perpendicular to the cylinder axis. At present, we have not had time to

* •code up this canonical solution.

_a Also, we have worked out the Mdthieu-function expansion for scattering

off a perfect, elliptic dielectric cylinder. This solution has been coded,

and gives answers which, in the perfect-conductor limit, agree with known

results. We have, as of yet, not run a comparative TDFD case. This

lMathieu-function expansion has been generalized to treat the case of a two-

media elliptical cylinder with the outer medium confocally coating the

inner. For our two-medium case, •.be inner medium may he perfectly

conducting. The two-medium solution h.; not yet been coded, nor P_ compara-

tive TDFD run made.

In the following sections of this report, we will first document the

TDFD code., Then we shall describe the canonical s-iutions and present code-

code comparisons for those cases where comparisons have been performed,

2
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ARCHITECTURE OF THE TIME-DOMAIN FINITE-DIFFERENCE RCS CODE

Equations to be Solved

We asst)uv in this study that electromagnetically linear conditions

prevail. Then the total field can be separated into an incident field

(which would be the field in the absence of the scatterer) and a scattered

field (the field modification caused by the scatterer's presence):

S (ET, T) -(ic Hina,+ (scat Hscat) I

Under the linearity assumption, both the incident and the scattered fields

individually satisfy Maxwell's equations.

t some background dissipation (ab' a,) is present, the incident fields

will obey

inc _____*iina*iincEixnE = _ J40 0t •(2)

aE inc

V x V Hinc - Co -at- + abEinc 3)

In the presence of an anisotropic scatterer with frequency dependent

properties, the total fields conform to

aHT ft a. (t') W)

V X E = - T " - K (t-t') a' dt' - J (4)

3
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T 6ET t + t(t') dTW
VxH - " + * + j K(t-t') x dt' + f (5)a _ --f t,

Subtraction of the firsL pair of equations from the second leaves us with
the version of Maxwell's equations obeyed by the scattered fields:

scatcat a s scat t . scatW)
VXEscat - -" f s KH (t-t •' dt'

a IHi t ancHinc(t,)

( " 0 ) " h inc (i)•Hnc _ t K (t-t') 8H• n (t l dt'

-j (6)

I Escat scat

VXHscat * + r -scat +. K(t-t') W dt'C O at bt'

P Einc tEinct'

+Eloc + ( -b) • Einc + f K(t-t') •E Wnc dt

+ _T (7)

It is convenient to represent the inhomogeneous parts (or incident

parts) of Pqs, (6) and (7) as

• * Esat]
[a[jT*lli ] + [j4] + [V XEsc

4
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[A* []- l [oC-[K*] (14)

-1Z

•[r] - j[o'] [• 1(1 
6)

[A] - [Oo] -[K] (17)

Substituting eqs. (8) - (17) back into (6) and (7) yields

scat sc ascatt. _ t(t)

S" at + 0o "H + f e(tt') at' dt' - - J (18)

|_
ca0 B st + t, a8 Escat(t')at + •0 " scat + .f tt " dt' - - T 9

't' at J (19)

These are the scattered field equations we will be treating.

6



Method of Solution

For now, we shall only concern ourselves with the 2D TM case. Thus,

E x, Ey and Hz will be present. Equation (18) reduces to a scalar equation,

but (19) remains a two-component vector equation.

Figure 1 illustrates a t ical TDFD 2D unit cell, and shows w-iere the

three field components associated with that cell are located.

In Appendix 1, we will derive a technique for solving this equation

sys-em using first-order exponential differencing. The result of this

appendix is that, if we omit frequency dependence, HZ(I,J) is advanced

according to

S-1•I* -I1*
nl -. aoAt n-itC aoAt -1 -Ij*(l n+1/2

HZ(I,J)n+l - e HZ(I,J)n - (I - e )(a0o) (20)

and [E(I,J)] is advanced according to

[E(I,J)]n+1/ 2 -- e O fat]At [E(I,J)] n-1/2

']'i-lI.-
-1

e([11 - e [ )[]At -l [jT(iJ)ln (21)

(The complication of frequency dependence will be considered later.)

As we have said, [aO] is permitted to be anisotropic. In the actual

code, it is represented by a total of five arrays:

7
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I

Yo (J+1)

EY(I,J) Y(J) 0
HZ(I,J)

EX( 1,3)

Xo(I),go(J) X(I) Xo(I+l)

Figure 1. Location of field components in a unit cell.
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SGX(I,J) is the bulk value characterizing the xx component of the

conductivity tensor at cell (l,J)

SGY(I,J) is the bulk value characterizing the yy component of the

conductivity tensor at cell (I,J)

SGXY(I,J) is the bulk value characterizing the xy and yx components of

the conductivity tensor at cell (IJ) (gyrotropic materials are not

permitted in the present code)

SGCX(IJ) is the surface conductivity in the x direction on the y-

facing surface of cell (I,J)

SGCY(I,J) is the surface conductivity in the y direction of the x-

facing surface of cell (I,J)

Thus, the actual conductivity seen by Ex at cell (I,J) is given by

.
Oo(IJ)xx - (SGX(I,J-I) + SOX(I,J))/2 + SGCX(I,J) (22)

Sao(I,J) - (SGXY(I,J-I) + SGXY(I,J))/2 (23)
wx XY

0 (IJ )X - (SGXY(I,J-I) + SGXY(I,J) ) 2 (24)

ao(la) - (SGY(I,J-l) + SGY(I,J) 1)" • 2 (25)
yy

This arrangement occurs because J sees the xx and xy conductiviuies in
•5 x

parallel, while J sees the yx and yy conductivities in series.
y

j The conductivity matrix for Ey at cell (l,J) is analogously described

9



uo(IJ),. - (SGX(I-1,J)"1 + SGX(I,J)- l 2 (26)

O O(IJ)xy - (SGXY(I-1,J)"I + SGXY(I,J) ) • 2 (27)

ao(IJ)yx - (SGXY(I-l,J) + SGXIY(±,J))/2 (28)

ao(I,J)yy - (SGY(I-l,J) + SGY(I,J))/2 + SGCY(I,J) (29)

Note that, although the physical conductivity tensor is symmetric at

each cell (SGXY(I,J) - SGYX(I,J)), the mathematical conductivity just

described is not symmetric (ao(I,J.xy •' ao (I,J)yx).

The dielectr.c properties of the scatterer are represented by five

analogous arrays, EPX, EPY, EPXY, EPGX and EPCY. These are combined in the

same way to form the mathematical permittivities e,(.,J) ij at the E and Ey

evaluation point, of cell (1,J).

Due to the anisotropic cross-terms, it is necessary to know Ey at the

XE evaluation points. This is done by simple linear interpolation,

EY(I,J)x - (EY(I,J) + EY(I+l,J) + EY(I,J-I) + EY(I+l,J-l))/4 (30)

E X at the Ey evaluation points, EX(I,J) is obtained the same way. The

matrix difforence equation (21) is then solvod twice at each cell and each

time step, once centered at and to advance EX(I,J), and once centered at and

to advance EY(I,J).

The following notation is also used;

10



QXX(I,J) 16 the (1, 1) component of e evaluated at the Ex

points

S-[eJ ].looAt

QXY(I,J) is the (1, 2) component of e evaluated at the R

points

col
QYX(I,J) is the (2, 1) component of e evaluated at the Ey

points

QYYki,J) is the (2, 2) component of e cvaluated at the Ey
P 3ints

-l

SXX(I,J), SXY(IJ), SYX(I,J) and SYY(I,J) are ([I] - e )[ao]"

correspondingly located and defined.

Additionally, if we refer back co eqs. (15) (17),

-1

TAUXX(I,J), TAUXY(I,J), TAUYX(I,J) and TAUYY(I,J) are [a,)- [e' Co]
• analogously located and defined, and

RXX(I,J), RXY(I,J), RYX(IJ) and RYY(I,J) are [ao](lam ab]

analogously located and defined,

It is necessary to evaluate ooth components of [E S as given in eq.

(11) at both Ex and Ey points in each cell. The above conventions indicate

how to combine the a. and c tensors for an inhomogeneous scatterer so this

complete set of evaluations may be achieved. In particular, we denote ES

as E evaluated at the E mesh point and ES as ES evaluated at the E mesh
y x yx x y

point.
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Thus, E (I,J) is, from eq. (11) with frequency dependence not yet

included,

S inc inc
- - TAUXX(I,J)Ex(IJi) - TAMCY(I,J)E*y (I,J)

Sincin

RXX(I,J)Exx (IJ) - RXY(I,J)Einc (1,J) (31)xx xy

inc 4

where E__ (I,J) is the analytically specified E in field evaluated at E
xx inc x inc x

mesh points, and E (IJ) is 'he analytically specified E fieldS~y
evaluated at B mesh points. Additionally, E (1,J) is

x ,
*inc ince

E (1,J) -- TAUYY(I,J)E (1,J) - TAUYX(I,J)E (1,3)
yy yy yx

RYY(T,J)E .n (IlJ) - RYX(I,J)E ie(I,3) (32)

where E in;(I,3) is the analytically specified E i field evaluated at the E
yyinc y iey

mesh points and E (1,J) is the analytically specified Ei field evaluatedIXI •yx sSx

at the E mesh points. Finally, Ey (I,3) and Eyx (I,) are, in analogy with
x xy yx

. eq. (30),

ES (Il,) - (E (IJ) + ESy(I+lJ) E E(I,J 1) + E S (I+l,J-l))/4 (33)
VVxy yy yy yy yy

! S(,J-(Sx ,J S xS

E-S ,J) y(E x(I,) + ES (1,3J+l) + ES (1-1,J) + ES (I-l,J+l))/4 (2A)
yx xx xx xx xx

It is also necessary to evaluate both components of [3 as given in

eq. (9) at both E and E points in each cell. Usir.g the same convention as

4

12



above, we let J be J evaluated at the E points and JT be JT evaluatedXY yx T yx x
at the E points. Then equation (21), where [J ] is actually required, usesT, T
[ij in the form

[ao]l [1 ] T I [ESI + [ao] l[Jf] -ao] [V x H scat (35)

We have already described how to find the [E S] contribution to [J T]. It is•, ~-ljf
easy to evaluate [ao] [Jf] because Jf is a prescribed analytic forcing term

which can readily be evaluated at either t'ie E or the E points. The
scatx yn troublesome term is [V x Hsa. This will have both an x and a y com-

ponent, each of which must be evaluated at the Ex and the Ey points.

Let us designate (V x H )xx as the x-component of this term

evaluated at the E points:

.scat HZ(I.J) - HZ(I.J-I) (36)
(V xll )x - Y(J) - Y(J-l)

The y-component evaluated at an Ex point is

(V x scat)

N - ½[(HZ(I+IJ) + HZ(I+I,J-1)) - (HZ(I.J) + HZ(IJ-l))
2L 2(X(I+l) -X(I))

(HZ(I.J) + HZ(I.J-I)) - (HZ(I-I,J) + HZ(I-J- (37)
+ 2(X(I) X(I-l)) (37)

'A The y component evaluated at an E point is
y

S(7 x .scat HZ(IJ) HZ(I-l(J)
yy X(I) - X(I-l)

13



and the x component evaluated at an Ey point is

( Hscat. --(V x • yx

lr,(HZ(I.J+l) + HZ(1-1.J+1)' - (HZ(IJ) + H(-.)
*2L 2(Y(J+l) - Y(J))

+ (HZ(I.J) + HZ(I-1.J)) - (HZ(IJ-1) - HZ(I-.,J-1)) (39)
2(Y(J) -Y(J-1))(9

Consequently, for example, eq. (21) for advancing EX(I,J) in all itsI glory, becomes

6n QX(INJ)X(IJ)n 1/2 + QXY(I,J)EY(IJ)n'/ 2

|x

+ (1 - QXX(IJ))ES ( 1,J)n - QXY(IJ)ESy ( 1,J)n

xx xx
n scat n

n V scat n .(40)

SXi(IJ)(Jf(ilj)ny - (V x I )x)(

* where QXX and QXY are defined after eq. (30), EY(I,J)x is defined by eq.

"(30), E S(I,J) is defined by eq. (31), ExS (1,J) is defined by eq. (33), SXX
xx xy

and SXCf are defined after eq. (30), Jf(IJ) and Jf (,Jx are the forcing

"currents, (V x scat )xx is defined by eq. (36), and (V x H S at) is defined
by eq. (37).

14



Th4 scalar equations for advancing HZ(I,J), eq. (20), is much easier to

implement than the matrix equadLon for advancing [E(I,J)]. We now need to

define

XUZ(I,J) as the bulk permeability at cell (I,J), pc of eq. (4),

SGMZ(I,J) as the bulk magnetic conductivity at cell (1,J), ao of eq.

(4),

-1

QMIZZ(I,J) - eXMZ(I'J) (41)

SMZZ(I,J) - ( - QMZZ(I,J))/SGMZ(I,J) (42)

TALUHZZ(IJ) - *o (pW " Po) (43)

evaluated at the center of cell (T,J), and

RMZZ(I,J) - *'•o b (44)

also evaluated at the center of cell (I,J)

The murderously complicated interpolations involved in advancing E do not

occur in advancing Hz partly because Hz is the only component of H present,

and partly because Hz is evaluated at the center, not on an edge of the

cell.

From eq (10), HS (1,j) is then, with frequency dependence still not

included,

S inc(Ij RZ(jHinc (4I

Ii(,) TAMIZZ(1,) IJ I,J)H J)) -45I,%

zz ~zz z

where Hinc(l,J) is the analytically specified Hinc field evaluated at the

cell centers.

One also need only evaluate J *T(I,J) of eq. (8) at the cell centers.
E o (z•. Equation (20), where J*T(1,J1) actually appears, uses the form

S' z 15



( 1o*T)(1 ) - - (I,J) + (c * (IlJ)

l(v x seat (46)

Or (B0 )(x~ ~ zz

Here, we already have found H (Il,J), J(Il,J)z is a prescribed magnetic

current density (which would be zero on any physically real probllem), and

(V x st )ZZ is just

( a EY(I+l,J) - EY(I,J) EX(I,J+l) - EX(I,J)S( V X gs c a t •
S- Izz Xo(I+l) - Xo(I) Yo(J+l) _ Yo(j) (47)

Thus, eq. (20) for advancing HZ(I,J) becomes

n+l ZIjn + IS+/HZ(IJ) n QMZZ(IJ)HZ(Ij) + (1 - QMZZ(I,J))H' (Ili)n+/2

-SMZZ(I,J)(J7(I_). + (V x E/ 2  (48).~~~ ~ -Z 'zz +( )zz )(8

M.

16
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Introduction of Frequency Dependence

Lei us assume the frequency-dependent term in eq. (19) has a kernel of

the form

a( m me m  (49)

m-i

where a has tle units of conductivity. This assumption is equivalent to

expanding the frequency-dependence of the material's electrical properties

in a Prony series under the constraint that all the poles be on the real

axis. (Appendix i indicates how one may relax the real-poles-only

constraint.)

Equation (19) then becomes

aEscat scat Ms
C * a. cm cat + )T (50)a_ t +- "o Es + -am -m - -

m-1

where

-Pmt t ,Escat(t,) B6 t

J scat (t) - me - atm dt' (51)

In eq. (50), J.T is still given by eq., (35), but with the understanding that

SS has the frequency-depe-i.;r.t term restored. In other words, ES is nou

represented by eq. (11), not eqs. (51) and (32).

Sscat
k'A" The J of eq. (50) are not clearly identifiable either as conduction--m

or as displacement currents. We shall -oin the name "Prony currents" for
5 them. Equation (50) for J scat(t) is x•Th Pasier t.- recognize if we dif-

-m
ferentiate it once; its homogeneous solution is just a decaying exponential'

17



8ascat 8 Escat
-I"--scat .(52)

O t M_ t

In the 2D TM case, the components of eqs. (50) and (52) then comprise
2(L+I) coupled first-order differential equations for E scat and scat

Ideally, these ecuations should all be advanced from (n-i/2)At to (n+l/2)At

simultanaously each cycle. A technique for doing this is also described in

* kppendix 1.

However, thie present code actually implements a slightly less accurate

algorithm where Escat alone is advanceo first in each cycle, and tben the

3 scat are advanced separately. Finally, a correction is made to the ad-
Sseat scat

vanced E to account for the effects of the P
m-

At this point, it is most instructive to go back to eq. (7) and perform

a rearrangement.

OEscat ,inc®rr, V x H scat - scat + (C _ o) ,
--p at tt

S+ (o " b) " Einc + f t ' (t' W)

Qb-10 at, +-

The inhomogeneous part of this equation can be written

T P S P scat P
[J ] + [JP] . [ao][E I + [3P] + [Jf] - [V x Hs ] + [3P] (54,

S PN where [B and [3 are

[ES] - - [,][inc] - [R][Einc] (55)
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[JP f =ft [K(t-t,)][tT(t,)]dt, (56)

with [r] and [R] still respectively given by eqs. (15) and (16).

Substituting eqs. (54) - (56) back into (53) then results in

SOEscat scat PEO-= at _o * E _ (57)

This equation is just (19) with the frequency-dependent term transferred to

the right and represented as J_. It is advanced according to eq. (21):

n e [E(I,J) n-/2

- ([I] - e )(o,] [1JT (IJ) + J P(Iij)]n (58)

i The problem with direct application of this procedure is that we do not

know the portion of JP associated with Escat at nAt until we have advanced

the Prony currents, and we cannot, strictly speaking, do that until we have
scatadvanced E5  efr~fn nitreit au fE bandwt

As mentioned previously, the code does not presently utilize the proce-

dure described in Appendix 1 for simultaneous advancement of Escat and
J scat Rather, we first find an Intermediate value of Escat obtained with

effects of the Prony currents omitted:

S_[C ]_ [ao]At

[E(I,J) int = e [I [E(I,J)]'a 1 /2
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i

- ([I] - e -1[ fo] ao 1p[JT( 1 ,J)]f (59)

The procedure for obtaining this intermediate va).ue is identical to the

procedure described in the previous section for advancement through a total

cycle in the absence of frequency-dependent effects. Its implementation in

the code is also identical to what was described in the previous sention.

Let us next turn to the advancement of the total Prony current JP as

given by eqs. (49) and (56):

M
Jff _a _ j (60)

m-l

where

IT
X f-imt t aET(t') 0imt

J (t) - e at' e dt' (61)
-0

Equation (61), like (51), is made more recognizable by differentiating with

respect to time:

TT inc sa
aim T a+ aJ- + "- - " (62)
at + mm- -3t a t

The equation for exponential-difference advancement of this result is

_T (lJ)n+1/ 2 _ e PmAt ITJ)n-1/2
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-~At

+ (1- em )(kinC(Ij) + ]scat (IJ),, (63

code evaluates Lscat(tlj)n as

(Ijint 1 (~~'/2

Lscat(lIj)n ( it (64)

Equations (63) and (64) uay be combined to give an expression for
(IlJ)n+1/ 2  in terms of known quantities. We can ther determine eP(I,J)n

as

I;(lj)n - T [am(lJ)][JT(iJ)n+1/ 2 + jT(,,j)n-/ 2]/ 2  (65)

Subtraction of eq. (59) from eq. (F8) then permits us to advance

[E(I,J)] from its intermediate value to itc value at the new time step,
(n+I/2)At:

[E(I,J)] n+/2 [E(I,J)]int

S.[• ]~-lo ]t

([I] - e '" t )[ao]At l[JP(IJ))n (6G)

Frequency dependence in the magnetic properties of the material can be
treated in an exactly dual manner to what we have just described for the

electrical properties.
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At present, we have not coded up magnetic frequency dependence, nor

have we combined frequency dependence with off-diagonal type anisotropy.
Both these generalizations would be perfectly obvious extensions of what has
been done, but we cannot conceive a canon:zal problem we could check the

results against.

Not mixing off-diagonal anisotropy and frequency dependence mears we

only treat diagonal a tensors. If eq. (65) is substituted in eq. (66), we

obtain

# _[e ]-[ao]At

[E(I,J)]n+I/ 2  -[E(I,J)]int -[[I] -e [

i
M

2[SA (I,J)][J (I,J)n+/2 + J lJ)n-I/2 (67)

M-
where

-l

[SA m(I,J)] - [a,(I,J)] [A m(I,J)] (68)

- In the actual code, two arrays are used to describe the material ef-

fects of each term in the Prony series. Let a 0 (I,J) 1 represent the xx

element of the inverse of the matrix described by eqs. (22) - (25) at cell

(I,J). Let ao(I,J) similarly represent the yy element of the inverse of

the matrix described by eqs. (26) - (29) at cell (Il,J).

Moreover, let AAMX(I,J) represent the xx element of the mth Prony

tensor of the bulk material at cell (1,J), and let AAMY(I,J) represent the

"corresponding yy element. Then the xx element of [SA m(I,J)] which actually

relates the x component of J (I,J) to the x component of E(I,J) is called
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SAMX(I,J) - aO(I,J), (AAMX(I,J-1) + AAMX(I,J))/2 (69)

Similarly, the yy element of [SA m(IJ)] which actually relates the y corn-

ponent JT(I,J) to the y component of _(I,J) is called

SAMY(I,J) - oo(I,J)1 (AAMY(I-l,J) + AAMY(I,J))i2 (70)

In keeping with our simplification of not mixing off-diagonal anisotropy

with frequency dependence, we ignore any possible off-diagonal nonzero
Svalues in [SA m(I,J)].

It turns out that only SA.MX(I,J) and SAMY(I,J) need actually be stored.

That is, it is not necessary to assign arrays for keeping ao(I,J) xx,

Sao(l,J) , AAMX(I,J) and AAMY(I,J).

Consequently, the actual equation used in the code for implementing the

x-component of the Prony correction is

EX(I) n+1/2 - EX(I,J)int

S - (1 - QXX(I,J)) ) SAMX(I,J) XJMSX(I,J)n (71)
-M-

where

n -,.TI jn+1/2 T n-1/2]2()

'Q XJMX(IJ)n [ miJ ' )n + J (I'J)x ]/2 (72)
m x m x

23
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Similarly, the actual equation used for impiemanting the y-component of the
Prony correction is

EY(I,)"'1/ EY(IJ) mnt

IM
-(1 - QYY(I, )) SAK1Y(I,J-) XJM.Y(I,J)' (73)

rn-I

Z where

xJmY(,J), - pJT(~j)fl+l/2 + T (I,JNfl1/2]/2  (,714)

M y m 'Y
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[I
Transformation from the Near-field Time Domain to the

Far-field Frequency Domain

The foregoing work described the determination of the scatterer's

electromagnetic response and associated near fields. We are actually inter-

ested in the RCS, which is a far-field quantity. Now we shall describe how

the code extracts the RCS from the near-field results. In this process, we

"also transform from time domain to frequency domain.

X •Any electromagnetic field can be expressed in terms of an electric and

a magnetic vector potential, A and A_. These vector potentials (in the
frequency domain) obey the inhomogeneous wave equations.

V2A + k 2 A - "A01 (75)

* , * ,o *
IV 2 A *+ k2 A - C (76)

!*

Here j is the fictitious magnetic current density often found useful in

manipulating Maxwell's equations. Equations (75) and (76) can be general-

ized to apply to any linear medium, although we shall find their free-space

* form adequate for our uses.

In 2D, we define the far field to be the region where all fields drop

off as r"1 /2; i.e., where all the faster falling terms have vanished. We

can then separate the electric and magnetic fields into two parts,
4

E E + E (77)-e •m

H I H + H (78)"- --e
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The e-subscripted parts are associated with the electric vector potential A,I and the m-subscripted parts are associated with the magnetic vector poten-
tial A . In particular, if we call Yo and Zo the admittance and impedance

of free space, we can show in the far field tnat

H -V x A/po- iWYor xA (79)-- e-

E - V x A/co -iwZOkx _A (80)

E iA -- iw(i A + i A) (8z1

HM i~ wi0A* + * (82)

Here, a t subscript indicates that only the transverse components (€ and z)
are retained. Equations (79) - (82) are analogous to 3D formulas, and

depend on the fact that

i(kr-wt)J7 (83)

"is a valid far-field frequency-domain 2D solution of the wave equation even

if the more general

f(t - r/c) (84)

is not a valid time-domain solution. These equations tell us that if we can.

evaluate A and A we can find the 2D RCS without undue complication.
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In two dimensions, the Green's function for the scalar wave equation in

the frequency domain obeys

*V2 G(j[IK) + k2 G(]jI') - 6(r-•') (85)

where X is the scatterer location and r' is the observer location. This

equation has solution, with R - [ -' -],

GZH)) (kR) (86)

Thus, at least in cartesian coordinates, A and A* become

!(ý)

f j(p',w) -jj 4g ) (Rw)dr (87)

* ~iH~1 )(kR)*A_*(',wm) - Jf j 0 J.(r,)dK (88)

SFor the far field region, G(1I1.') asymptotically approaches

Se~~i31r/4iR

G(KII') - e 4 */ i k (89)

This expression may be further manipulated by letting r' replace R in the

denominator of the radical. The phase term requires a bit more care:

kR - k(r' - • r) - kr' - (kx coso' + ky sinG') (90)
-r
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where

- .Lcos#' + LYvol(91)

is a unit vector pointing from the target to a far-field observer.

Using these expansions, we can rewritc the formula for A in the far

field as

A(r',w)-

311r/4 _ ee e rirJ ik(x cosý' + y sin')d_ (92)
4_ _ __ ir kr I ' ~ ~ 'r( 2

A corresponding expression exists for A*(j',w). The far-field expression

for E then becomesS~-e

-E (r',w) - iw At(•',W) -

Si•Pe311r/4
0 r ikr' ff Jtr•eik(x cosý' + y sino') dr (93)

4 =v _

9 Similarly, H becomes

H (r',w) - iLA*(r',W) -S-m

12
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iw Oe ' 3 1f/eik4 2 etikr I *" -ik(x coso' + y sin o')dr (94)q4 wk7e LJ t *(r,w)e (4

la Analogous fozmulas exist f-.r E and e"I Equations (93) and (94) are not lirectly applicable to the output of
our 2D Maxwell solver as these equations demand the frequency-domain J and
_ while the Maxwell solver outputs the time-domain currents.

Let us say we .. •'t E (r',w ) where r' points in one of N discrete
angles of interest and qis one of Nq discrete frequencies of interest. WeSqq
can then write

iW poe* .. . ik r
Ee(r'w) / q p
"-ep q 8m V •kr eq p

j (Ajwt ik' r
foje dt JJ Jt(rt)e -pq dr (95)

where k' is the wavenumber pointing towards the observer at location r' and
-pq -p

frequency oq, and where we have interchanged the order of time and space

integration after replacing !jt(r,w) with its inverse Fourier representation.

Analogously, H (r' ,w ) becomes
-fp q

iicoe -3i7r/4 / ikq r

H (r, 2 e q p~
-mp q 87r 'rk'r'

q p

j t - ik' r re dt f1*(1:, t)e -pq dr (96)
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Equations (95) and (96), and the two companion equations for E and H
S--M - -e

S~are in a form which is compatible with our time-domain Maxwell soiver.

Taking the time integration outside the space integration is vitally impor-

Stant to the efficiency of our algorithm. Were this not done, J t (,t) and
*t(j,t)* would haqe to be Fourier transformed at every paint beforeben

Sbin
integrated over space. _nha form of eqs. (95) and (96) replaces this enor-

S mous computation with a single Fourier transform on the result of the space

integral.

If we let J scat represent the total current (conduction, displacement

and Prony) associated with the scattered electromagnetic field (see eq.

•., (53)).

aE scat aE inc
jscat - "--+ "Escat +(. 0

+• -o -E +t (et _ at

i s no + ft ) • w dt' (97)

andif e sbsttut Jscat for Jt in eq. (95), B of eq. (95) becomes the
an if we su s catte _t t -e

S~scattered field Esa of the first section unless magnetic materials are

present. That is, •t scat integrated over the scatterer cross-section accord-

• ing to eq. (95) gives Esa in the absence of magnetic materials.

•. ~ scat ,2 x I

RCS(Op,wq 2r •e (Z'pq " (98)

'.q• In this convention,_ A* and E are zero.
.v -m

However, it is possible to replace the area integral of eqs. (95) and

(96) with a contour integral by means of Huygens principle. In particular,
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let S be a closed contour which completely surrounds the target. For in-

stance, let S be a rectangle defined by x - x1 ,x 2 and y - YIIY2.

(At this point, it may be well to digress a moment and present a map of

the problem space we are using. Let us refcr to Figure 2. The entire

problem space is described by 1 :5 I 5 NX, 1 _5 J 5 NY or Xo(1) _5 x 5 Xo(NX),

W Yo(l) : y : Y0 (NY), where NX and NY are typically around 250. The working

volume actually occupied by the scatterer is (NXB - I) by (tNYB 1) cells

centered in the overall problem space where NXB and NYB are typically on

the or.-1 r of 75. Thus, the workitf; voluune is separated from the problem

space bo,°adary by (1/2)'.NX - NXB) ctlls along x and (1/2)(NY - NYB) cells

Salong y. This separation, which is on the order of 80 culls, is necessary

to decoupie the outer boundary from the reactive fields of the scatterer.

The Huygens surface S is normally placed rne cell outside the actual working

volume, at I - ILOW or IHIGH and J - JLOW or JHIGH. Then x, is Xo(ILOW),

etc.)

Let Escat and Hsjat be the scattered fields which our Maxwell solver

predicts will exist on S due to the time-domain illumination. Let n be 3n

outward-pointing unit normal on S. If we then remove the scatterers and its

currents, but let an electric surface current

K mn xHsca (99)

and a magnetic surface current

K* n _EscatK- -- n x (100)

flow oI& S, the scattered electromagnetic field will be replicated outside S.

This means the area integral of eq. (95) may be replaced by
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z (nx k scat(ri,t))te pq Asi a (t)t (101)

where the summation over i represents integration over the finite difference

cell edges which lie on S and B scat(_i,t) is Iscat evaluated at the middle

of As This summation is represented by I because it has the dimension of

amperes. In the actual code, it goes by the name XIEST if one is computingq
a monostatic RCS or XIESTB if one ý.i computing a bistatic RCS. Figure 1iscat. pindicates that Hs is actually evaluited at the cell centers, not on thez .scat.

cell edges. Thus, an interpolation is necessiry 'o obtain sc (rit). For

instance, on the y - Y0 (JLOW) portion of S, we have

I
(L x _scat (rit))t - - i sin 0p (HZ(I,JLOW) + HZ(.ý,JLOW - 1))/2 (102)

Analogously, the area integral present in eq. (96) for H (r' ,wq) can be
-rn-p qU •written

- ik' •risa

E(-nxEscat (rt))e -Pq Asi Iscat q ) (103)

i *pq

(Remember the t subscript on 1_, 1*, or anything else implies evaluation with

the r component omitted.) In the code, this variable is called XIMSTq or
XIMSTBp. Since Escat is evaluated at the middle of the cell edges, no

p scatinterpolation is necessary to obtain E (jrt). On the y Y.(JLOW)

portion of S, the equation analogous to (102) is

I • •scat.

(-n x E ri,,t))t - - i EX(I,JLOW) (104)
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Equations (95) and (101) indicate the z-component of 1scat is as-

sociated with the '-component of E,(x~q e ). The q-component of _cat in eq.
`101)• •'as the same association, as the cross with i in eq. (80) proves.

SThese scattered fields are the TM solution.

Analogously, the 4-component of Hscat in eq. (101) and the z-component

of E in eq. (103) relate to the (decoupled) TE solution, which we are
not treating in detail at this time.

Let us use I n(t)t to denote this "current" evaluated from the
-pq tsct *+/

finite-difference code at nAt. Let us analogously denote Iscat *n+I/2

As the finite-difference calculation progresses, we can then keep running

summations of each scattering direction r' and each frequency W
_p q

scat n n scat m j qmAtAtEq E 1 (t)mtte (105)
m- 

q

scat *n+I/ 2  n Iscat -*m+i/2 eJq(m+/2)At6)
-Qpq (t)t m-' _pq itqt/ At

When the time-domain finite difference calculation is complete, these Q's

will then respectively contain quantities which are directly proportional to

the electric and magnetic contribution to the RCS in direction r' or at W
-p q

Note that it is only necessary to back store 2(N + N q) complex quantities

during the time-domain finite-difference calculation in order to preserve

all the information necessary to generate a monostatic RCS as a function of

w and a bistatic RCS as a function of scattering direction.

The symbol Q is used in eq. (105) because it represents a quantity with

units of coulombs. In the code, it is written SIESTq if one is computing a

monostatic RCS or SIESTB if one is computing a bistatic RCS. The scattered
_scat

electric field associated with -Q1 q (t)t is
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_scat , . i 3 /oe 4 ikq r' cat (107)
Be ('wq " 8M q p 4q 'to

The code tracks the #'-component of this quantity as EPES or EPESB , when

jr- is normalized out. Analogously, the scattered magnetic field associated_ seat--

with Qpq ft)t is

W e~e iik r'
H - (rw ) " -8w e •k rq p c at (108)

inm p -pq (108)r rIq p

In the code, the z-component of this quantity is HZMS or HZMSB when jr' isIq p pnormalized out. The scattered electric field associated with the magnetic

current is obtained by combining eqs. (80) and (108),

E scat a e eq -r;i x Qscat (109)
-m -P'W q' Birc 42r' er -~ qqp

In the code, the 0'-component of this quantity, less the jr' factor, is
p

EPMS or EPMSB

The radar cross section then becomes

( h Rs ca, qt- 2 i e • ' q + E s c a t ( r ' 'co ) ) r 2

0RCS(ý 27r)e-2w Se -m :- R q (110)
Sq Ii(r',w ),I

-p q

In the code, SCATXE or SCATXEB is the Escat contribution to the ratioq p e scat
inside the absolute value signs, and SCATXMq or SCAIXMBp is the Esm

contributions.
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Ii
CANONICAL SOLUTIONS AND CODE-CODE COMPARISONS

Scattering from a Layered Dielectric Cylinder

Let us first discuss scattering of a plane wave by a circular

dielectric cylinder composed of concentric layers of different materials.*

Assume there are N layers, with layer i characterized by cis Pit -it a and

outer radius a1 . We shall here treat the TM case (fl along the cylinder

axis; B transverse), although the TM problem is nearly identical

mathematically.

Assume the incident wave is at angular frequency wq, and is propagating

in the + y direction,

H Hinc (X't) -iz Yo e 0qq(i)

Oq

Sn--Z

inc i(k 0qrsin -w3t)Eln(r,t) - - i. e qq(2)

• Here, Yo %o- is the admittance of free space. The same symbol will sub-

i• sequently be used to designate Neuman functions, but context should keep the
•i~i meaning unambiguous. Additionally, k0 qistefespcwanubr

co1/I,- w /c.

S~Equation (1) may be expanded in cylindrical harmonics,

Hinc(K,•q) -zinY - nkren
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-~i Yo 0zJ(kOq r) + n J2n2(kJOk r)cos no+ )2iJn (kOq r)sin n~] (3)

n-,2n-i, 2J

In the future, it will be useful to designate the coefficients of these

harmonics as a, ;

inca -0

ainc - 2 n > O, even
n

a inc -2i n odd (4)

Since V X H'n - - j inc the cylindrical harmonic expansion for E

becomes

Einc-- - ~r\ ainncJn(kr)n sin n - ainCJ(k 0 r)n cos nq WqCO r n ,O n n q
q ln-0, 2 n-l,2

Skq a incJ (kor)cos n# + a incJ (koqr)sin n (5)
- kqIn-0,2 n-1, 2 01

The innermost material will include the cylinder axis., Thus, only

Bessel functions of the first kind are permitted in the solution there;

H ( - Ylqiz aJn(klqr)cos n + alqJn(klqr) sin n (6)

2 ~n-1,2 0
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I *- q ( q) 1 L r a qJn(klqr)n sin no - aqJn(klqr)n cos nn
q 0,2 n-1,2

alJ(k r)cos nO + a' J'(k r) sin n (7)-'nklq nn 2 n n l,2I qLnq qn- q 2 i-

where Ylq is the admittance of medium I

Y Iq 1(8)

and klq is the wavenumber of medium I at wq,

lq + q)(i +(9)

The N-I concentric shells will permit solutions of both kinds. Thus,

in region i, I < i • N, alqJn(klqr) of eqs. (6) - (9) becomes replaced by

al J (k r) - at J (k r) + b Y(k.r) (10)
nqr lq nq n iq n iqn

Finally, iri free space outside the cylinder, the first Hankel function

is the only permitted solution for the scattered field. Thus, in this

region, a incJn (k r) is replaced by
n nOq

a inc ascat H(1)
n n(kOqr) •nq n (Oq
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in eqs. (3) - (5).

The boundary conditions at each interface are that eErt E and Hz be

continuous. It turns out that the first and third of these conditions are

equivalent. Thus, matching of coefficients at the innermost interface lead:-

to

a' Y J (k a)-a Y a)-b 2 y0n aqlq n klqal) ,a nq2qqJn(k2c 1 nqY2qYn(k2qal) 0

al J'(ka) -a 2 J'(k a) b2 Y'(k a) 0 (12)nq n lql1 nq n 2q 1 nq n 2q1I

Matching of coefficients at any other interface except the outer bound-

ary of the cylinder gives

ai-lY J(k a )+b t Y Y(k a )nq i-l,q n i-l,q i- + nq i-l,q n i-l,q i-l

a - Y Jn(kai b ib Y Y(k. ) - 0
nq iq n i i. nq iq niq i-1I

a inqlJn(ki ~ail + biq'-'n(ki ~ail
anq n +-~ - nq n i-1, qai-1)

-a J'(k.qa.-) a bi Y'(k a 0 (13)

nq n iq i-l nq n iq i-l_(3

Finally, the boundary condition at the outermost surface is

aN NqJn(kNqa) + b' , Y-(kN ascaty H)(kI)nq) n(, I n(q a nq 0 n qaN)

-a inc

n n~ nkOqaN

N3



I

aNnqJn(kNqaN) + bN Yn(q) a scat n (k0 qaN) - anc Jn(kaq.) (14)

SFor each azimuthal harmonic and each frequency, eqs. (12) - (14) com-

prise a set of 2N linear equations in 2N unknowns. The associated matrix is

five-banded, and extremely easy to solve by Gaussian elimination. (The main

diagonal and first diagonal off each side of the main is full. The second

diagonal off each side of the main is half zeros.)

The quantities of interest in RCS evaluation are the aSCat 's. A two-nqdimensional bistatic RCS is defined by

9 scat(O,,w 2

RCS( wq) -2x r Einc (15)

The scattered electric field (neglecting the reactive radial component) is

E _Escat (r-,w q)I
-pq

sca HM= -ýco no a scat H(1)(k qrl)sin no (16)
0-, nq n Oq nq n Oqp

Here, use is made of the identity k0 qYO - Wqo.

For large arguments, Hankel functions have the asymptotic limit

' i(kr 2n + 1

H (krr 2 e (17)
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Substitution of eqs. (16) and (17) in (15) then yields the RCS in terms ofl ~scat.
the ase

nq

RCS(qp'W) 01n 0 a SCat(_i)ncos nOp + C a sat(1) nsin n• 2 (18)
p q- k 0  £ nq pnqp

n-0,2 n-1,2

A total of six code-code comparisons have been made between the

cylindrical-harmonic frequency-domain algorithm and out TDFD code. First we

examined a solid dielectric circular cylinder of er - 2. The cylinder was
Sgiven a radius a - .5 m. We used an angle of incidence of 0 inc - + 450 from

the x-axis. Meshing was square, with each cell .04 m on a side. Figure 3

illustrates the TDFD cross-sectional model for the cylinder.

Figure 4 is a linear comparison of the monostatic result, and Figure 5
is a dB comparison. Figure 6 is a linear comparison of the bistatic result

of 250 MHz, and Figure 7 is a dB comparison. Figures 8 and 9 are bistatic

comparisons at 500 MHz.

The second comparison was an identical cylinder except that e r was

increased to cr - 9. Figures 10 -15 compare the same data as Figures 4 - 9

did for the first example.

Figure 16 is a four-way dB comparison of the monostatic RCS computed by
Z both techniques for both values of c

Good agreement occurs for all the e r - 2 comparisons, but discrepancies

occur above 300 MHz when cr - 9. For instance, agreement is not good in the

bistatic result at cr - 9 when frequency is 500 MHz (Fig. 15). If er - 9,

300 MHz corresponds to a wavelength in the cylinder of .33 m, or about 16

cells per wavelength. The conclusion that a wavelength must be resolved

into 16 segments to get good finite-difference results is neither new nor

surprising.
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The third comparison was for a perfectly magnetically conducting

cylinder of a - .5 m radius. Meshing was again square, but with each cell

now .04 m on a side. Figure 17 illustrates this TDFD model.

(TM scattering off a perfectly magnetically conducting cylinder will

give identical RCS results as the more familiar problem of TE scattering off

a perfectly electrically conducting cylinder.)

Figure 18 shows a linear comparison of the two monostatic RCS calcula-

tions, and Figure 19 gives a dB comparison. Figure 20 is a linear

comparison of the bistatic result at 250 MHz, and Figure 21 is a dB

comparison. Figures 22 and 23 are bistatic comparisons at 500 MHz.

Although all these magnetic-cylinder results show good agreement be-

tween the two techniques an interesting minor difference does appear,

especially in the second and fourth quadrants, of Figures 21 and 23. In

particular, the cylindrical-harmonic bistatic RCS results are exactly sym-

metrical about the main diagonal (0 - 45*), while the TDFD result is not.

We believe a low-grade bug is present in the TDFD coding, but that this bug

was undetectable until bistatic capability was added to the TDFD code in the

final days of the effort.

SThe fourth comparison was for a perfectly magnetically conducting rod

of the same radius, but coated by a damper .5 m thick. Thus, the overall

radius of the composite rod was now 1 m. The damping material had
-3

properties c - 1, 'r - 1, a - e */lp - 4 x 10 . These values were

selected to give a skin depth on the order of the damper thickness at fre-

quencies (50 - 500 MHz) for which calculations were run. Square cells .04 m

on a side were again used.

Figure 24 illustrates the TDFD model of the damped cylinder. Figures

25 - 30 compare the same data as Figures 18 - 23 did for the bare cylinder.

It is important to note that damping the rod reduces the RCS in all but

the forward direction, where it enhances the RCS. This occur because the
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forward direction lies in the scatterer's shadow; that is, inc = Escat in

the fcrward directioit.

Figure 31 is a four-way dB comparison of the monostatic RCS computed by

both technic~ues for the bare and coated magnetic cylinder. It may be seen

that the coating reduces the cylinder's RCS by about 13 dB over the fre-

quencies of study.

The fifth and sixth comparisons were the same as the third and fourth,
but for a perfectly electrically conducting rod. All other parameters were

unchanged between the two pairs of comparisons. Figure 32 gives the four-

_ way dB comparison of the monostatic RCS for the bare and coated electrically

conducting cylinder. It may again be seen that the coating results in about

a 13 dB reduction of the RGS.
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Scattering from a Thin Dielectric Strip

Richmond has worked out a solution for scattering of a plane wave by

an infinite dielectric strip. The strip may be of any width, but its opti-

cal thickness should not exceed a tenth of a wavelength.

This approximate solution is based on superimposing arbitrary combina-

tions of the incident wave and the two zero-order waveguide modes a strip

can support propagating in its width direction. The coefficients of the

three waves are then optimized by a slight variation on Galerkin's method.

It is an intrinsic property of the Richmond solution that the total

scattered current (conduction, displacement and Prony) is symmetric with

respect to the center line of the strip's thicknesý dimension. Thus, bis-

tatic cross-sections computed from this algorithm will always have a plane

of symmetry coincident with the plane of the strip.

Two code-code comparisons have been run between the Richmond

frequency-domain algorithm and our TDFD code. We first did a strip of
e r - 2 which was .04 m thick and 2 m wide. Cells .02 m square were used, so

}, • the TDFD model was 2 x 100 cells. Illumination at •inc - 45° with the

Poynting vector in the first quadrant was assumed. Monostatic RCS com-

parisons were performed from 50 MHz to 500 MHz, and bistatic RCS comparisons

were performed at 250 MHz and 500 MHz.

Figure 33 shows the TDFD model. Figure 34 is a linear comparison of
the monostatic result, and Figure 35 is a dB comparison. Figure 36 is a

linear comparison of the bistatic result at 250 MHz, and Figure 37 is a dB

comparison. Figures 38 and 39 are bistatic comparisons at 500 MHz.

The second comparison was a strip of er - 9 with .02 m thickness and

2 m width, Cells were again .02 m square, so the TDFD model was I x 100

c, lls. All other parameters were the same as for the first example,

Figures 40 - 46 compare the same data for this case as Figures 33 - 39 did

for the first example.
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It may again be seen that the two results are in excellent agreement

for all frequencies in the cr - 2 case, but that some discrepancies occur

above 300 MHz in the c - 9 case. For instance, the e - 9 bistatic com-

parison at 500 MHz (Figure 46) again does not show particularly good

agreement, especially at the minor lobes. To get really good finite-

difference results, especially away from field maxima, we again see that a

wavelength must be resolved into 16 segments.

The TDFD and frequency domain solutions are probably less discrepant

here in Figure 46 than they were for the r - 9 dielectric rod at 500 MHz

(Figure 15) because we are here only violating the 16 cells per wavelength
rule in one direction. Figure 15 is based vrn a calculation where the rule

was violated in two directions.
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Elliptic Cylinder Scattering

The transformation from Cartesian to elliptic cylinder coordinates is

x - 1/2 d cosh u cos v (1)

y - 1/2 d sinh u sin v (2)

z - z (3)

where d is the distance between the foci of the ellipse. Additionally, we

sometimes denote

- cosh u (4)

ij- cos v (5)

so that

sinh u - .2 . 1 (6)

In this section, we shall use the notation of Uslenghi and Zitran,2

3that of Blanch where it does not conflict with the first notation, and that
of Stratton4 where it does not conflict with either of the above. (Lack of

q a standardized notation greatly compounds the inherently difficult problems

associated with elliptic cylinder coordinates.)

For all cylindrical coordinate systems, the TM solution for Hz obeys

V2Hz + k2H -0 (7)

In elliptic cylinder coordinates, this equation takes the form

(8211 z 2H] + a2HZ_a-_-_+ -__J + + k2H - 0 (8)
(d/2) 2 (cosh 2u - cos 2v) r8u2  + az2 z

Let us now assume this equation can be solved by separation of vari-

ables,

90i
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Hz - U(u)V(v)Z(z) (9)

Substitution of (9) in (8) yields

(d/2) 2 (cosh 2u - cos 2v) V + v z+ L 2 - 0 (10"

Let C be the first separation constant,

- fi-+ C - 0 
(11)

z

X Then U and V must obey

U" - (a - 1/8 . d2 (k 2 - C) cosh 2u)U - 0 (12)

V" + (a + 1/8 • d2 (k 2 - C) cos 2v)V -0 (13)

where a is the second separation constant.

In the rest of this report, we shall assume there is no z dependence,

so

k2 - C -k2 (14)

and we shall denote

i
c - 1/2 • (kd) (15)

91



I

where c is not the speed of light, but is the number of radians at the

frequency of interest between the ellipse center and one of its foci. Then

eqs. (12) and (13) become

U" - (a - 1/2 . c 2 cosh 2u)U -0 (16)

V" + (a + 1/2 • c 2 cos 2u)V -0 (17)

Equation (17) is Mathieu's equation and (16) is the modified Mathieu

equation.

The c of eqs. (15) - (17) corresponds to c A in Stratton and is in

Blanch. In some more modern works, such as Abramowitz and Stegun, and

Hodge, 6 it corresponds to 2jq.

It turns out that Mathieu's equation only permits periodic solutions

for discrete eigenvalues of a, where these eigenvalues depend on c. If we

assume

V - • De2k(c) cos 2kv (18)

k-0

we obtain even solutions of period r. The rth eigenvalue of this equation

is denoted a 2 r, and the rth eigenfunction is denoted

- De2k(c) cos 2kv (19)

"k-0

92
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If we normalize these functions to be unity at v - 0, we obtain the even

Mathieu functions of period x

Ser(cn) - De2k(c) cos 2kv (20)
S~k-0

S~Alternatively, if we let

k-OIV -IDe 2kiC)cos(2k +~ 1)v (21)

we obtain the even solutions of period 2r. The rth eigenfunction of this

g system, also normalizad to be unity at v - 0, is

Se (cq' D 2r+1 (c) cos(2k + l)v (22)S2r+l(,1 - e2k+1tC

k-0

Now let us consider odd solutions of period w,

V Do2 k(e) siii 2&'- (23)

2r
The rth eigenvalue of thls equation is denoted b and the rth eigenfunc-

tion, normalized to have. unity derjs.ative at v 0 is

93
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So ir(cm) - Do2k(c) sin 2kv (24)
k.l

Finally, the rth odd eigenfunction of -eriod 2w is

Nor '' -(23

So 2r+l(c2q) = 0 2k+i (c) sin(2k + )v(

k-O

Any even Mathieu function is orthogonal to any odd Hathizu function ou

the interval (0,2w). Likewise, different even or odd Mathieu f'unctions are

orthogonal. The normalizatien factors are

27r

N (e(c) " Se 2 r C,cos v)2 dv2 2r
0

r 2r )2+ (De 2r(C))2 +

(e) er+l-• •, "Zr+l""t 2;r+l-')

k0

"2r L 2h(28)
k-I

(0' 2r+1

( D(O2(+l0C))• (29)

k-0
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The four types of Mathieu futictions defined by eqs. (17) (29)

describe the azima,.thal dcp,:ndence of the elliptic-cylinder harmonic5.

Equation (16), on the )ther hand, descriLes the radial dependence. There

are a total of 16 kinds of radial Mathieu f'inction,.

Let Z k(x) denote the kth Bes.:el function of the jth kind. For ex-

ample,

k"(x) (X) + iY (X) (30)

Then the four radial Mathieu functions corresponding to Se 2 r(c,n) may be

shown4,5 to le

O 4 ' e 2r

- Re(j'(cj - ( 2kc
2 r -0 eDe2 r(c)

..- ) + -Qk+s((,) ((2) (31)

where

"co 2; es - I for s - 1,2,... (32)

- (c/2)e (33)

- (c/^Ž)eU (34)

and s is any abitrary interger, but is best selected if
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D c) - maxkDa2r(0) 2 (35)2k

Similarly, the four radial Mathieu functions corresponding to

Se 2+1(c,,j) are

O • 2r+l.
SRe~ ' 2 r�"r-k De-2 k+l(c)

i 2r+l• )• r- -2r+1l(.)

k=O 2s+l (c)

S(J) (112 + Jz(J)Q( 2) (36)

"k- s( •+Jsl' 1Jk+-s+l k-s

The radial Matniei functions corresponding to So2r+p (c n) are

DO2 r(C)

S2rlr+k __2 l.

ROW 'o -12r+
2rl -A 1 )E+ Do ~(c-)

k-i 2s+l(c)

Q) Q () (37)

[Jk-s(ý1)Zj+.+l(S2) Jk+s+i(•,-sQ 2),(8

i Let us note consider the expansion of a plane wave in elliptic-cylinder

S• harmonics. If we have a plane wave propagating at an angle #inc from the

IL
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H inc -iz Y0ei(kx cos 4inc + ky sin inc (39)I4

then the desired expansion isc

H inc i Y a inc Re(1)(c,C) Se (c,1)'z -- UO U-~ = m em(C•

+ )b inc Ro(')(c,C) So (c'?1)] (40)

rn-1

where

inc •8•i inc)
a j • Sem(c, cos (41)

ý4 
m

bin m 8;r (o) So (c,cos in)(42)

The associated electric field is

i aHinc OHinci

B.inc -1I - z - z -(43)iwsh kt av -V au

where h is the elliptic cylinder metric

Sh - h - h - (d/2)(cosh 2 u - cos2v) 1 / 2  (44)
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p Expansion of eq. (43) yields

Einc k -. a { lm- v e m() Se(C;0ahm Re()(,t Semc

+ ý b inc Ro°)(ci)Som(c'n)m

M-1

- a Rem (c,ý)Se•CO)

0

!r-+ bin(Ro(1)'(c,O)SOm(col) (46)
m-I

We shall first assume this plane wave is scattered by a perfectly

conducting elliptic cylinder. Thus, the scattered soluticon must be an

infinite series of outgoing Mathieu-Hankel functions.

-Hscat "i- Yo a-0 cat~r Re (3) (cm )Sem4c'j)

IA+ b s~cat• Ro (3)• (COSo (C,17) (46)

m-1

98



scat -k 00 scat (3)
E ih Iýa m Rý, (c,ý) Se'(c, 17)

+ mý tscat Ro (3) (cC)So'(c,1i)]

r + b s~cat Ro (3)1 (cW)o'(cl1)] (47)

rn-i

The requirement that on f. ~-

Einc +Escat -0(8
V V

scat scatthen yields formtulas for as and bm m

(1),
scat ~~Re SecCosin) 49

a sa m mS ccsic(9

m m

scat m8 Rom) (C,ý1 ) SoInc (C
mN(o) RO (3 ) (cC1ý) mm m
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We are now in possession of enough information to evaluate the RCS of

R'(3,) adR (3) (,)btthe elliptic cylinder. At large arguments, Rem3(c,ý) and Ro(3)(c.ý) both

approach

i(e• 2m + 1 7

Re( 3 (c,3 ) - e4
Sm 4cm

1 i(c cosh u - 2m4 1)

Jc cosh ue

Uslenghi an 7itran2 then define the scattering function

k i(kr' - f/4)

,scat,,P(v')- e r,v (52)

where v- approaches at large r'. In view of eqs. (1), (2), and (15), wewhr p aprahsp

can show that

kr' -+ c cosh u (53)
p

Substitution of (46), (49) - (51), and (53) into (52) then yields the bis-

tatic scattering fuiiction.

Re(1)' (C,•,)
...2 m Sem(c,cos i Se (c,cos V')

Ro (e) ) in cos%)]

)•, N~e Re(# (c',•)

+ (o) (3'm So (c,cos inc So (COS (54)
N(o) Ro(3)' (c, 1 ) m mS•m-1 m m
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We can then evaluate the bistatic RCS,

RCS(v') - 2IP P
p IHz in2

4 IP(vI)1 2

- k (55)

c Uslenghi and Zitran2 have published curves for IP(v')1 2 as functions of

i2nc, cý, and tanh u,. The quantity

i c•, - (1/2) • kd cosh ul (56)

is the number of free space radians at the frequency of interest along one

half of the major axis of the ellipse.

Additionally,

tanh ul -/• - 1  (57)

tk is zero if the ellipse is reduced to a conducting strip, and is unity in the
special case where the ellipse fattens to a circular cylinder.

inc
Figures 47 - 49 illustrate our results for IP(v')J 2 when n is O,r/4

incand 7r/2 and v' is n + 7r (the backscatter case). These figures agreep

exactly with previously published results2 and confirm the correctness of

our analysis and Mathieu function routines.

We have also reproduced the Uslenghi and Zitran results for TE scat-

tering by an elliptic cylinder, although this calculation is only relevant
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to our present work in that it tests our Mathieu function routines under

different circumstances.

It is interesting to note that in the case of scatteriig by a conduct-

ing strip, ul is zero, ý, is unity, Re(1),(c,l) is zero and all the ascat
' m m

vanish.

For scattering by a dielectric cylinder, we encounter a strange com-

plication which will probably be new to anyone who has previously only used

Bessel functions and spherical harmonics. The incident and scattered fields

can still be represented by eqs. (40) - (47). However, we must now also

consider the fields which penetrate the cylinder,

trans trans (1)
H yJ tanse (1 j,) Se (c 1 7,)

_z m m

+ ý btrans Ro(1)(cj,ý) Som(cli)m (58)

E trans k, CO a• trans Re(1)(,cOSlCi,7

Etrans --

Strans Re(1)( So(c )]bm
m

- am Re10(c 1 ,)Se(c 1 ,77)
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M-1

Here Y1 is the characteristic admittance of the dielectric

Y, - 'ýI lloo (60)

k, is the wavenumber in the dielectric

k,~~p (61)

and c, is the number of radians between the ellipse center and a foci for a

w:ave travelling in the dielectric,

I
C, - (1/2) • k1d (62)

The boundary conditions at j - • are now the continuity of Hz and Ev

HIc + Hcat - trans (63)
z z z

Sinc + Escat - Etrans (64)
v v v

These conditions lead to the relationships

S( I(anc Re( 1 )(c, l) + ascat Re (3)((c¢, ) Se (c,'1)01 m m m m 6M-0
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-Y, a trn Re (c1,) Se(c19,*) (65)

m-0

k (aic Re( 1 ) (c,1) + a Re 3)1(c,ý,)) Se (c,r,)
in -n m in m

m=O

- k. atrans Se (66)

plus an additional pair -f relationships connecting the odd elliptic
Shbarmonics.

The cosplication now arising is that Sem(cq) and Se (c,) are not

Sequal, since c and c. are different. "I: other words, I'he dielectric
S- cylinder e tuses each incident elliptic harmonic to couple to evel-f scattered

elliptic harmonic. Thus, unlike the case for a :izc,,4ar c'ylilder or a
• sphere, eq, (65) and (66) do not separate out into decoupled equatiov pairs

S~ fcr each value of m.

;• It is necessary to substitute eqs. (20) and (22) for e m(c,i1) and
inn

-••, Sem(c1,,7) into (65) and (60). Doing this, rearranging terms, and facrorin•

out the trigonometric functions yields

scat .Y0 Dea(c)Re (3), - trans y, Den(,,)Re(I)(ciC)
2 am O D m(c)e %kci 1) a / am

in-0 inU-0

-- am' Yo Dem(c)L(1 )(c,C,) (7

M-O
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scat n cR(3)(,fi trans ()a aca m" e (c e 'ca C Dan(c1 )Rem= m 0ZaO

a- c Den(c)Re l)'(Cg,) (68)
mm W

m-O

These equations must be satisfied for all n, as must a silmilar family of

equations for -he odd elliptic harmonic- Once such a solution has been

"peiZormed, the RCS is still given 'y eqs. (4W - (55). We have noý yet

programmed this solution, but zertainly have all the necessary bits altd

pieces of Mathieu programs ou the shelf, and could quickly assemble tiiem.

The two-medium elliptic cylinder problem is a fairly straightforward

extension of eqs. (67) and (68). Unlike Bessel functions of the second

kind, radial Mathieu functions of the second kind do not g. to infinity at

u - 0. However, they do have both nonzero values and nonzero derivativos

there. This 'means elliptic-cylinder harmonLcs with radial Mathieu functions

of the secovd kind have either a sharp ricge or a step discontinuity on the

line connectnf the coordinate system foc. Ccnsequently, their appearance

is forbidden in th. case of scattering from i uniform £Ingl-medium elliptic

cylinder. Such is not the case, however, for the outer medium in the two-

medium case.

Subject to this understanding, thea ell.ptical-cylinder harmonic coeffi-

cients for the two-medil'm cyl'"der obey

(aotter~l) Y2ReM(c2,61) + aoutr(2) 'Y2Re (2) (2,)Den (2

S- m m M

ia-O

.• ianter. Y l),c,; (1)c• (6c

rn-C
-• mV8

U . . .. . . ...



aoaier(ll (1)'l+ outer(2) (2)'
(-..c.0ae (c ,) +,aRe (c )De ( )

ianer nc,

X (r0 (a nj y Re " c'c 2 ) + a(0 m c,2)e (c)

, (auter~l) Re 1(cI\' )+outer( 2 ) Y2 2)' e(2
•- Lm e•e "(•,c a 2, c=•) (71)

x•,-0

rninc S(.' ~~ car (~3) ncC)

mI-0

- ~outeri)(lb' outer(2) R 2)'(2 2 )Dn)(2(a c 2Re M(C?,ý2) + a Y2. e e (2ý) e~-)(1
42m m m

The odd elitclne amoi ofiinsoe a similar equation

a cf Re ir eon +s a sfcatcneed only be concerned

wi~hthevanshin ofthetota tagenial lecricfield at its surface.
i • Thus. in that case, we can ignore eq, (69) which pertains to continuity of

,H . Aurc~ver, we know that aine will vanish if the inner material is a
Sz mS~perfect condutctor, This has L•.C, affect of decoupling the elliptic harmonics
: j from each o•.het" at the inner interface; eq. (70) reduces to
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XW- 7-KI.-~r -- q T- -Z 3orV1yrwW m

au e•1)Re (1)(c• + aourer( 2 ) Re(2)'m m m (c 2 ,• 1)-O (73)

Equations (71) and (72) do not simplify.

The problem of a perfectly conducting ellipse or strip confocally

"coated by a dielectric is probably by far the closest replication of a

steýlth wing ttich there is any chance of solving canonically. As such,
this problem is cf gre•- io'purtcncc in testing out numerical codes for RCS

reduction.

! 45
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SUMMARY

In this report, we have presented canonical solutions for 2D TM

electromagnetic scattering by lossy, layered circular cylinders; thin

dielectric strips; thin perfectly conducting strips; and lossless, confo-

cally layered elliptic cylinders.

These canonical solutions have been used to check out a TiýFD code

designed to give the monostatic and bistatic RCS of a generalized cylinder.

(The TDFD result undergoes a Fourier and a near-field to far-field transfor-

mation before yielding an RCS which can be checked against the canonical

results.)

The TD'D code can handle cylinders containing abrupt electrical discon-
tinuities, including conducting or resistive cards, anisotropy in the plane

of the cylinder, and frequency dependence in e, i and a.

The only major limitation we have found on the TDFD code is that about

16 cells are required to resolve the shortest wavelength of interest. Also,
about 80 cells must be interrosed between the scatterer and the outer bound-

ary to isolate the reactive field of the scatterer from outer boundary

effects.
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APPENDIX 1

TIME-DOMAIN TREATMENT OF MAXWELL'S EQUATIONS
IN FREQUENCY DEPENDENT MEDIA

Introduction

Consider a medium with anisotropic, frequency-dependent electrical

properties. The electrical response of such a material may be fairly

generally described by

V x H -11(t) + J f(t)(i

where J f(t) is a forced current and

( - " (t) + 0 DE(t) + f.K(t-t') DE(t')dt' (2)

with D indicating the time-derivative operator. In this formulation, ao,

e and V,(t-t') are second-rank tensors.

The frequency-domain form of eq. (2) is

r o + + iW eU(l)d E() (3)

Separation of eq. (3) into real and imaginary parts gives representations

V •for the frequency-dependent conductivity and permittivity tensors,

- + Re iWjfe-"'K(u)du] (4)

-1.3



ew)- + Re [JeiwuK(u)d (5)

Longmire and Longley7 have considered the scalar version of this for-mulation for the special case wihen K(u) can be expressed as an expouxential

series,

K(u) - e Me (6)

For this situation, eq. (2) way be rewritten

d• M

ti(t) - u0E(t) + c DE(C) +-aJm-(t)J (7)

U °with

()_t e - d _ )e at' (8)
-QC

~ ;Equation (8) is equivalent to the differential equation

_DJ m(t) -DE(t)_ J (t) (9N
_ .m-M

Longmire and Longley assumed that materials could be represented by the

exponential series of eq. (6) :Ath one term for each decade of frequency

over the spectrum of interest. 'i!is is equivalent to doing -. Prony expan-

sion of K(u) (or a(w) and e(C)ij the poles forced to be spaced at

IL

SN



m+mo0

si 10 Pm (10)

While this assumption has been claimed to be reasonably accurate for wet
soil, it would seem generally more correct to determine the poles from a

SProny ansal.s of the medium's measured frequency-dependent characteristics.

This is especially likely to be true if the material exhibits rapid varia-
tion in a and c with frequency.

State Theory Applications

Let us first assume the Prony analysis reveals no complex-conjugate

pole pairs. In general, the a will be second rank tensors, but the AM will

only be scalars. Then for every pole, each component of J will, obey

DEi - DJmi - PmJmi - 0 m- I - M, i - 1 - 3 (11)

Additionally, the tensor form -,f eq. (7) give.

M

eiDE + a°E + a J -J ij 1 -3 (12)
-i j i n -1 mij mj j

where

J. - (V x H - Jf)j (13)

j Equations (11) and (12) constitute a set of 3(M+l) coupled first order

differential equations.
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If anisotropy and frequency dependence were not present, the usual

method of numerical solution would be explicit time-domain finite

differencing. In this method, E and H evaluation points alternate beth

spatially and temporally using a well-tested leapfrog arrangement. 8 -1 0  II

this arrangement, no two equations are coupled, and E+I/2 (I,J,K) means E

evaluated at ((I + I/2)AX, JAY, KAZ, (n + I/2)At).

However, the present system of equations requires the three E.'s and 3M

31
JIs all to be evaluated simultaneously. While this cannot be done using

conventional time-domain finite differencing, state theory does indicate an

appropriate generalization of time-domain finite differencing.

First, let us consider the case where anisotropy, but not frequency

dependence, is present,

,4[e ] D[E] + [aol[E] - [J] (14)

* This matrix differential equation has a homogeneous solution

[E]h - e 1 [A] (15)

and a particular solution

[Elp - (a] [ 3J] (16)

giving a general solution

'~-e] -l -lO~
[E] -e [A] + [co1] [J] (17)
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The constant vector [A] may be evaluated at (n - I/2)At:

(E]'-/2 - (A] + [(O]l[J]n (18)

This gives the new E-field vector in terms of the old,

SNJ 1 Cool= [a0]At 'i I a 1A( " 19

[E~n~l/2 [•.ll [Eo]' 1/2'il[°Jt
[E]n' [E]nl/ 2 + [ e c [ao]'t[Jn (19)

Similar exponential matrix techniques have been reported for time-

domain solution of generalized multi-conductor transmission lines. In the

previous work, one may see how to evaluate eq. (19) if [ao] is singular or
'•if [CC1 ]1l[ao]At has arbitrarily large elements. Basically, matrices are

exponentiated using the power-series representation of an exponential.

If frequency dependence is present, the [E) vector of eqs. (14) (19)

becomes replaced by

(E] [~- E'] (20)

The [c ] matrix becomes

CYOI C 21 0 0 (21)

and the (ao] matrix becomes
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[dO1) a- 0-[a']1 (22)

0 -fill* .. 2

0 0 "

Lastly, the forcing vector becomes

[jI- ]- i' (23)

kN Then the matrix equation for simultaneous advancement of Eand the J is

-E]12_ _e1l~a-]At [E'n-1/2 + ([] (2e4)JL

In the past, time-domain finite differencing has not often considered

anisotropy. Frequency-dependent effects have been included by using the old
i n1/2to find the new En+l/2 . (This decouples E from the J in eq. (12).)

-m n+1/2 1/
Then the new have been used to find the new Jnl/ from eq. (11).

_M

Treatment of Complex Poles

If Prony analysis of the material's frequency dependence reveals com-

plex pole pairs, a more general treatment becomes necessary. In this case,

K(u) will contain terms of the form

R
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K(u) - tsin(I mu + ý)ep u

I- b coso it uePM + bm sino cos-y ue PMu(5

The J (t) of eq. (8) now becomes

9M i~~ (t) - ft DE(t')(cosý siny (t-t')e 6mt-)

+ siný MCOS7M.(t-t')e M )dt'

- J (t)cos~m + J s(t)sin~m (26)

where Jm and J msare the parts of J massociated with coso and sino m

respectively:

Jc (t) - f DE(t')sin-y M.(t-t')e dt (27)

ttt'

ms(t') - f CODEt'cosl M.(t-t')e m d(t') (28)

Differentiation of J mc(t) and J ms(t) yields

DJ mc(t) --flJ (t) + MJ ms(t) (29)
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DJ s(t) - DE(t) -i mJ MS(t) + 7mimc(t) (30)

These equations can be solved for J3m (t) and J ms(t) using Heavyside algebra:

[(D + Pm) 2 + 72] jc (t) - I DE(t) (31)

rn ms -me

[(D + pM) 2 + 72] J s(t) - (D + pm)DE(t) (32)

Thus, J M (t) obeys the differential equation

[(D + .m)2 + 72] J (t) - [sinom(D + Pm) + cOSým7 ]DE(t) (33)rn m -rn in + cos m ~)(3

in principle, equations like (33) could be added to the set of equa-

tions given by (11) and (12), and the entire ensemble solved by state

theory. This approach, however, requires treatment of second-order matrix

differential equations of the form

[A]D 2 [E] + [B]D[E] + [C][E] - [F] (34)
CNI

4h The homogeneous solution of this equations includes square roots and complex

exponents of matrices; it is much more complicated than eqs. (14) - (19).

(To the best of our knowledge, exponential differencing has never been

applied even to scalar second-order differential equations.)

Consequently, when Prony analysiss of the material data yields complex

pole pairs, our present strategy is to fall back to the old technique for
dealing with real poles: First find En+I/ 2 using the old n-/2 Then use
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the new En+I/2 and the finite-difference form of eq. (33) to find tha newS jn+Ii2

-m

!
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